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Figure 1: In maximal Poisson-disk sampling disks cover the domain and half-radius disks do not overlap. In 2d we generate 1
million points in 12 seconds (serial) and 1 second (GPU). The software is practical in up to 5d (serial) and 3d (GPU).

Abstract
We provide a simple algorithm and data structures for d-dimensional unbiased maximal Poisson-disk sampling.
We use an order of magnitude less memory and time than the alternatives. Our results become more favorable
as the dimension increases. This allows us to produce bigger samplings. Domains may be non-convex with holes.
The generated point cloud is maximal up to round-off error. The serial algorithm is provably bias-free. For an
output sampling of size n in fixed dimension d, we use a linear memory budget and empirical Θ(n) runtime. No
known methods scale well with dimension, due to the “curse of dimensionality.” The serial algorithm is practical
in dimensions up to 5, and has been demonstrated in 6d. We have efficient GPU implementations in 2d and 3d.
The algorithm proceeds through a finite sequence of uniform grids. The grids guide the dart throwing and track
the remaining disk-free area. The top-level grid provides an efficient way to test if a candidate dart is disk-free.
Our uniform grids are like quadtrees, except we delay splits and refine all leaves at once. Since the quadtree is
flat it can be represented using very little memory: we just need the indices of the active leaves and a global level.
Also it is very simple to sample from leaves with uniform probability.

Categories and Subject Descriptors (according to ACM CCS): Computing Methodologies [I.3.5]: Computer
Graphics—Computational Geometry and Object Modeling

1. Introduction

Poisson-disk sampling is a sequential random process for se-
lecting points from a subdomain. Each point must be disk-
free, i.e. at least a minimum distance, r, from any previous
point. For simplicity we consider constant r. The selected

points are called a sampling or distribution. The sampling is
maximal if no more points can be added to it. The process
for selecting points should ideally be bias-free: every un-
covered point has a uniform chance of being selected next.
This is equivalent to the probability of generating the next
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point inside any disk-free subdomain being proportional to
the subdomain’s area.

This sampling process is crucial for many fields. In com-
puter graphics, maximal Poisson-disk sampling (MPS) is de-
sirable because the power spectrum of the inter-sample dis-
tances lacks low frequency noise, similar to blue noise. This
pattern yields good visual resolution for rendering, imaging,
texture generation, and geometry processing [PH04]. In ray
tracing, Monte Carlo integration over importance samplings
is used to capture soft shadows, motion blur, and depth of
field. Combining a three dimensional scene with lighting and
camera dimensions (e.g. shutter time) produces a high (e.g.
five) dimensional space.

MPS is also useful in the physical sciences for mesh gen-
eration, interpolation, and process modeling. In fracture me-
chanics, a mesh from a bias-free random point cloud keeps
cracks from propagating along non-physical preferred di-
rections [BS98, JB95]. MPS points produce simplicial and
Voronoi meshes with provable quality [MTT∗96, EMD∗11,
EM11]. Maximal distributions improve the efficiency and
robustness of generating a mesh because the connectiv-
ity can be generated locally [AB04]. Stochastic collocation
methods require high dimensional meshes with random po-
sitions and bounded quality [WI10, BNT10]. In chemistry
and statistical physics, Poisson-disk sampling models ran-
dom sequential adsorption [DWJ91].

The Poisson-disk process arises in nature and statistics,
and is simple to describe. However, these do not imme-
diately translate into a good algorithm, as we desire it to
be fast, memory efficient, and parallel, and produce multi-
dimensional points that are unbiased as well as maximal.

2. Algorithm Overview

Our algorithm constructs a maximal d-dimensional Poisson-
disk sampling. Here we explain our technique at a high level,
leaving the details for Section 4. The key to our technique is
a simple data structure. Previous work used a dynamically-
constructed quadtree/octree to keep track of uncovered re-
gions of the domain. Such a data structure has compara-
tively large storage requirements and expensive operations
for traversal, construction, and update. Instead we use an im-
plicit “flat quadtree” data structure, which we explain below,
that uses less memory.

Our data structure keeps track of two things. First, as
in prior work, we construct a base grid of uniform square
boxes covering the domain we wish to sample. The base grid
stores the samples. The grid cells are small enough that no
cell can contain more than one sample. (Recall two samples
have a minimum distance r between them.) Second, our “flat
quadtree” lists the active subcells of the grid. It is this list of
active cells that we refine, similar to a quadtree, as we iter-
ate our algorithm. Unlike a quadtree, however, all the active
cells are the same level and size. It is “flat” so we do not

need to store the tree and its pointers explicitly; instead, the
index of each cell and the current iteration number (level)
completely describes the cell. We initialize this list with the
cells in the base grid and begin with iteration 0.

At each iteration of the algorithm, we throw many darts
into the list of active cells. For each dart, we pick a cell, then
a point in the cell, both uniformly at random. We use the
samples stored in the base grid to determine if the new dart
is too close to an existing sample, in which case it is a “miss”
and rejected. If the new dart passes the neighbor test, it is a
“hit” and we add it to the sampling by (a) storing it in the
base grid and (b) removing its bottom level cell from the list
of active cells. At the end of the iteration, we refine each re-
maining active cell into 2d cells, e.g., in 2d squares become
4 smaller squares, as in a quadtree. Each new cell is tested
against the sampling, and discarded if it is already covered
by the disk of a single sample. Then we begin another iter-
ation of the algorithm. We terminate the algorithm when no
more active cells remain.

Figure 2 shows sampling a unit square.

GPU algorithm overview. Our algorithm is also
amenable to parallel implementation; dart-throwing, neigh-
bor tests, cell refinement and coverage tests, can all proceed
in parallel. In parallel the only tricky part is ensuring ac-
cepted sample locations remain unbiased when parallel can-
didate darts conflict.

Results overview. The process of generating points is
provably bias-free, so the output is bias-free in practice. The
distribution is maximal up to round-off error, meaning that
every point of the domain is within distance r+ε of a sample
point, where ε is the numerical precision.

We observe linear run-time in output size n for a given d.
This is because in practice the fraction of darts throws that
are hits is a constant. The runtime is the finite sum of an infi-
nite geometric series independent of the maximal grid level.
Our number of quadtree levels is bounded by the bits of pre-
cision. Deep levels are needed to resolve certain “unlucky”
cases of several disks that together cover a cell, but no one
disk covers the cell by itself. For us these are rare enough
they can be handled without a level limit or any special ef-
fort to detect them.

Our serial implementation samples one million points in
about 10, 90, and 1400 seconds in 2d, 3d and 4d respec-
tively. Using 2 GB of memory on a modern laptop, we gener-
ated samplings of 24, 6, and 1.4 million points in 2d, 3d and
4d. Although efficiency degrades with dimension, we were
able to sample 300k points in three hours in 5d, and 44k
points in 80 minutes in 6d. We believe these are the largest
d-dimensional bias-free maximal Poisson-disk distributions
in the current literature.

We also demonstrate parallel GPU implementations in 2d
and 3d. On an NVIDIA GTX 460, we can generate 600,000
samples at a rate of 1,000,000 samples/second in 2d, and
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(a) Iteration 0 End (b) Iteration 1 Start

(c) Iteration 1 End (d) Iteration 2 Start

(e) Iteration 2 End (f) Iteration 3 Start

(g) Iteration 3 End (h) Iteration 4 Start

Figure 2: Example sampling of a unit square with r = 0.2.
Active cells are light, inactive are dark. The right-hand col-
umn shows the active cells at the start of an iteration. The
left-hand column shows the cells remaining in the active cell
list before they are subdivided. Some active cells are already
covered by a single disk, but it is more efficient to leave them
until they are selected or the end of the iteration. In this ex-
ample we detected that the sampling is maximal at the be-
ginning of iteration 4, because there are no active cells.

200,000 samples at 75,000 samples/second in 3d. The size
limitations are due to 1 GB of memory.

3. Previous Work

During the last decades many methods were proposed to
generate maximal Poisson-disk samplings. The classical dart
throwing algorithm [DW85,Coo86] produces unbiased disk-
free points, but requires unbounded time to achieve a max-
imal distribution. A bias-free dart is thrown and rejected (a
“miss”) if it is closer than the minimum distance required to
a previous successful dart, otherwise it is accepted (a “hit”).
As more darts successfully hit the domain, the remaining un-
covered parts of the domain (“voids”) get smaller, decreas-
ing the probability of acceptance. In order to improve the
efficiency, many methods were proposed to solve a relaxed
version of the problem. Some methods sacrificed the bias-
free condition: Wang tiles [CSHD03, LD05] and Penrose
tiles [ODJ04, Ost07], for instance, do not target the whole
domain uniformly when a dart is thrown; other methods have
the same behavior [Mit87,Jon06,DH06,Bri07] for other rea-
sons. For example, Jones picks a sampling sub-region based
on the relative area of some Voronoi cells covering the do-
main. This introduces bias: a relatively large Voronoi cell,
with higher selection probability, might contain a relatively
small void. Wei’s parallel sampling method [Wei08] used
a sequence of multi-resolution uniform grids, but its out-
put distribution is biased and only near-maximal. Bowers
et al. [BWWM10] use a similar phase-group-decomposition
method to Wei, but without a hierarchy.

Output quality is typically evaluated using the Fourier
transform, radial anisotropy, and radial mean power plots.
Tiling methods are fast, but the bias in their output can be
observed in these pictures. Some advancing front methods
are fast, and in some cases their bias is not visible using
these pictures. Unfortunately, the community currently lacks
a definitive test of whether a (biased) process produces ac-
ceptable output; PSA [Sch11] is a start for 2d. For this rea-
son we concentrate our attention on methods whose process
is unbiased.

Some methods follow a bias-free sampling process and
achieve maximality within some threshold. The ones most
directly related to this paper are by White et al. [WCE07],
which is 2d only; and Gamito & Maddock [GM09], which
extends to higher dimensions. They throw darts in sequence,
discarding or keeping one depending on whether it is cov-
ered by a prior dart’s disk. The improvements over classic
dart throwing come from retrieving prior darts locally using
a uniform grid, and refining that grid in a quadtree to track
and target the remaining disk-free area. The diagonal of a
top-level grid square is equal to the sampling radius, so each
square accepts at most one dart. To throw an unbiased dart,
a quadtree leaf is selected weighted by its area, then a dart
is selected uniformly from within it. The likelihood that the
dart is a hit (disk-free) is equal to the ratio of the disk-free
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area within a square, to the area of the square itself. There is
no a priori bound on the ratio, but if a miss occurs, the square
is refined to better capture the disk-free area. Subsquares
covered by prior disks, or smaller than some threshold, are
discarded. The threshold affects maximality and bias. The
authors claim that empirically the number of boxes, m, is
O(n), which may include some threshold- and dimension-
dependent constants.

Recently we reported a provably correct varia-
tion [EPM∗11]. It uses the same top-level grid but,
instead of a quadtree, a direct representation of the disk-free
regions. We compute the points of intersection between
a square and nearby circles, and those circles with one
another. The points define a convex polygonal void which is
a provably-tight outer-approximation to the local disk-free
region. The likelihood of a miss is bounded by a constant,
and there are O(n) voids. This yields an algorithm using
O(n) space and E(n logn) time, and the output is provably
maximal and bias-free. The method is described in two
dimensions; in theory it may extend to higher dimensions
but constructing non-convex polyhedral voids would be
complicated in practice.

Most methods are inherently discrete and sequential, in
that darts are produced and resolved one at a time. Jones
and Karger [JK11] depart from this paradigm by directly
modeling the time of arrival of points following the Poisson
process. The same top-level grid is used, but each square
computes the location and time of arrival of its first point
independently. Then the arrival times of conflicting points
in nearby squares are resolved sequentially. If points con-
flict, the later point is rejected and the time and location of
the next-arriving point is generated if needed. It would be
interesting to do an empirical evaluation of the work and
memory spent generating and updating the times of unused
points, and compare it to the work sequential methods spend
on quadtrees, voids, and dart misses.

Other Poisson-disk sampling implementations on
the GPU include Ebeida et al. [EPM∗11], Bowers et
al. [BWWM10] and Wei [Wei08].

The traditional domain is the unit square, cube, . . . , d-
dimensional box. Periodic boundary conditions, i.e. the do-
main is a d-dimensional torus, are used to remove boundary
effects when empirically measuring bias. Some prior work
addresses more complicated domains, such as 2-dimensional
polygons with holes [EPM∗11].

3.1. Comparison to Related Work

Compared to our method, Wei [Wei08] is faster, but the sam-
pling is not maximal. White et al. [WCE07] is unbiased,
maximal and faster, but is 2d only and uses more memory.

We use an order of magnitude less memory than the
prior unbiased methods [GM09, EPM∗11], but use some

of the ideas of each. We use the top-level uniform grid
Go for checking disk-overlap in constant time as in Ebeida
et al. [EPM∗11]. Samples are guided by grids similar to
Gamito & Maddock’s [GM09] quadtree, but uniformly re-
fined to the same level at any given time. Our algorithm pro-
ceeds through a series of iterations throwing a fixed number
of darts, as the Phase stages II of Ebeida et al. [EPM∗11].

Our flat quadtree has several advantages. Except for the
top level base grid, the cells are all implicit. There is no
datastructure for a cell: no tree or pointers [GM09], no poly-
gons [EPM∗11]. We need only store spatial indices, d in-
tegers, for each cell. Even these indices only exist for the
subset of cells not yet covered by disks. Gamito & Maddock
use one array per quadtree level, whereas since we only have
one level at a time we can pack data more efficiently into a
single array. This results in lower storage requirements by an
order of magnitude. In practice our memory in d +1 dimen-
sions is about the same as Gamito & Maddock’s or Ebeida et
al.’s in d, so one could say we get one dimension “for free.”

Since the cells all have the same area, it is simple to
select one in constant time without bias. In contrast, both
quadtrees and polygonal voids have varying area, so some
sort of binary search is needed. Ebeida et al. in Phase II takes
log |Go|= logn time to select a polygon. In Gamito & Mad-
dock, all the cells of a given level have the same area, so one
could select a level in O(log(maxlevel)) time then select a
quad of the level in O(1) time.

In all these methods, in practice the non-constant selec-
tion time is dominated by the O(1) expense of checking each
dart for a miss and refining the quadtree or constructing each
void. In Gamito & Maddock, the hit rate improves locally as
a cell with a miss is refined to better approximate the uncov-
ered area. For us, we refine cells in lock-step after the fixed
number of throws in an iteration. In Figure 5 we see a con-
stant hit rate after the first few iterations; explicitly tracking
where the misses occur is not necessary. In 2d we have about
the same running time as Ebeida et al. and we are an order
of magnitude faster than Gamito & Maddock in dimensions
up to 5. Using simpler datastructures that change less often
not only saves memory, it is also faster.

4. Algorithm Details

Algorithm 1 presents pseudocode for the serial algorithm.
Now we describe the important implementation nuances.

Base grid. The uniform base grid, Go, covers the domain.
Cells are sized so that a cell can accommodate at most one
point: diagonals are r, which means the side lengths are so =
r/
√

d. (Side lengths shrink with the dimension.)

Each base grid cell stores a single sample or is empty.
We consider cells to be open on their minimal extremes,
half-open squares. This ensures that a point is assigned to
a unique base cell, and dart generation is not biased towards
the boundary between active cells.
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Work Bias-free Maximal Compute bound Memory bound

Classic dart-throwing [DW85, Coo86] yes no ∞ n
Voronoi [Jon06] no yes n logn n logn
Scalloped sectors [DH06] no no n logn n
Hierarchical dart throwing [WCE07] ? yes yes n n
Parallel multi-resolution uniform grid [Wei08] no no n n
Spatial subdivision [GM09] ? yes yes n† n†

2-phase [EPM∗11] ‡ yes yes n logn n
Point arrival times [JK11] ‡ yes yes n n
This work? yes yes n n

? These methods all use quadtrees to guide dart-throwing and represent uncovered areas.
† The paper claims O(n logn) runtime and O(n logn) memory, but we interpret their tree size to be O(n), with

some d and level threshold dependence.
‡ Provable bias-free process, maximal output, and compute and memory bounds. Others’ bounds are empirical.

Table 1: A comparison of Poisson-disk methods. Many have similar asymptotic complexity in n, but few explain
their dependence on dimension d or bits of precision b. Memory dependence on d and b is critical in practice.

Algorithm 1 Simple MPS algorithm, CPU.

initialize Go, i = 0, Ci = Go

while |Ci|> 0 do
{throw darts}
for all A|Ci| (constant) dart throws do

select an active cell Ci
c from Ci uniformly at random

if Ci
c’s parent base grid cell Go

c has a sample then
remove Ci

c from Ci

else
throw candidate dart c into Ci

c, uniform random
if c is disk-free then

{promote dart to sample}
add c to Go

c as an accepted sample p
remove Ci

c from Ci {additional cells might be
covered, but these are ignored for now}

end if
end if

end for
{iterate}
for all active cells Ci do

if i < b subdivide Ci
c into 2d subcells

retain uncovered (sub)cells as Ci+1

end for
increment i

end while

Active cells. Each cell is uniquely defined by d integer
indices and the level l. Cells at level l have spacing 2−l× so.
Any cell can identify its parent in constant time via simple
integer operations.

Besides the indices, there is no datastructure for a non-
base cell. Inactive cells require no storage.

We store the indices of the active cells in separate ar-

rays, one for each of the d dimensions. However, a two-
dimensional array of width d could be used instead. These
arrays are fixed length, and are used for all iterations.

Update in place. We wish to make the arrays long enough
to accommodate cell division at the end of an iteration, with-
out dynamic memory allocation. We use arrays of length
B|Co|, where B is a dimensional-dependent constant. In prac-
tice, we have found that a value of B = d works well. Dur-
ing an iteration the cell lists only decrease, so it is sufficient
to ensure that the number of active cells is less than B|Co|
at the start of an iteration. In an iteration we throw A|Ci|
darts, where A is another dimensional-dependent constant.
We have chosen A large enough that many fewer than 2d

subcells are uncovered on average. See Section 4.2 below.

Coverage and disk-free checks. We identify nearby cells
using a template of base-grid index offsets. It is precomputed
before any of the iterations. The template is a subset of a
d2
√

d + 1ed lattice of cells: those cells with a corner closer
than r to a corner of the center cell. Winnowing the lattice re-
duces the template significantly as the dimension increases.
When checking if a dart is disk-free, or a cell is covered, only
the samples in the template cells around the parent base-grid
cell are relevant. For efficiency, cells closest to the center cell
are checked first, as their samples are more likely to cover
the dart or cell.

To check if a dart is disk-free, we check if it is farther
than r from every nearby cell sample. To check if a cell is
covered, we check if all of its corners are covered by any
one nearby cell sample. All the 2d subcells can be checked
at once by checking 3d points. See Figure 3.

Since a cell might be completely covered by a combina-
tion of disks of several nearby darts, but not by a single disk,
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Figure 3: (a) Cell C is covered because its farthest corner is
less than is≤ r+ε away from disk-center p . (b) When a cell
is split, we check whether each of its children are covered.

being “uncovered” does not guarantee that there exists some
available region for sampling.

We experimented with using the square-inside-circle test
of White et al. [WCE07]. This can detect whether a cell is
covered by multiple disks by checking if all of its potential
children (grandchildren, etc.) are covered by single disks.
However, these tests added code complexity without improv-
ing the average performance.

Level limit. Iteration i uses grid level l = min(i,b) where
b is the bits of precision in our floating point numbers. The
algorithm becomes slightly simpler when the quadtree level
reaches the maximum. Each half-open Cb cell holds a sin-
gle d-dimensional floating-point number. The multiple-disk
coverage problem is resolved. Advancing to the next itera-
tion involves merely discarding the current cells (which are
just points) that are inside a (new) disk.

We use integer indices to represent cells, which are con-
verted into floating point boxes when placing darts. A level
limit of 23 corresponds to boxes about 1e-7 the width of the
base grid boxes. The sampling is maximal up to the diagonal
of the smallest boxes, de-7×so.

4.1. General Domains

The algorithm description and analysis assumes that the do-
main is a unit box, and that each cell is entirely interior
to the domain. This requirement may be relaxed by a sim-
ple amendment: treat the exterior of the domain as previ-
ous disk-covered areas. We require a primitive that returns
whether a candidate dart is exterior to the domain, and an or-
acle to tell whether a domain boundary cuts a box. For many
solid modeling engines the runtimes of the primitive and or-
acle are significant. Also more miss-darts will be thrown,
especially if the domain has thin regions. In some cases the
effect of the misses can be bounded by the finite precision
because small enough boxes will be entirely interior or ex-
terior to the domain. For a domain whose volume is signifi-
cantly smaller than the volume of its bounding box, a differ-

ent construction of the base grid may be necessary to ensure
the memory and runtime are linear in the output size.

4.2. Complexity

Our algorithm has two tuning constants, A and B. A deter-
mines the number of throws, and B determines the length of
the arrays storing the active cells. They are interdependent
and their relative values determine a memory—speed trade-
off. These tuning parameters were determined empirically.

1. Speed: smaller A (larger B) is faster.
2. Storage: larger A (smaller B) uses less memory.

If we throw more darts during an iteration, a larger frac-
tion of them will be misses, slowing down the algorithm.
The miss-fraction increases because of several reasons. As
an iteration progresses the voids get smaller but the cells ap-
proximating them are fixed size. A cell might have no void
at all because it is completely covered by a combination of
several disks, but still be active because it is not covered by
a single disk. When a dart hits, it might completely cover
some other cells, but we do not remove them immediately
because searching would take too much time. (To simplify
the overview, all active cells with the same parent were dis-
carded in Figure 2.)

If we throw more darts, we will get more hits, and there
will be fewer active cells (and fewer uncovered subcells)
at the end of an iteration. Indeed, we need A larger than a
threshold so that the number of subcells decreases from one
iteration to the next. In the first few iterations, the number of
active subcells actually grows. But once the active cells are
small and the uncovered regions are isolated, the number of
subcells decreases geometrically. See Figure 5.

According to our numerical studies, picking A ∈ [0.3,0.6]
for dimensions 2 and 3 balances these two factors well. A =
0.8 works well for d = 4. In our experience the performance
is not sensitive to the exact value of A above the threshold.
For higher dimensions it appears that the threshold increases
dramatically, e.g. A = 10 for d = 5. For a given dimension,
we have chosen to fix B and find a sufficiently large value of
A. It is possible that increasing B may help reduce A, but will
have little effect on the threshold.

A variation would be to use an adaptive value of A. When
refining cells, if the number of uncovered children exceeds
the current memory, de-refine (or recompute) the cells and
continue to throw more darts in the current iteration.

4.2.1. Linear Time

Most of the time is consumed during the first few iterations.
These generate most of the darts. After that, the number of
active cells decreases from iteration to iteration by a con-
stant factor, c2. Empirically c2 ≈ 0.5 for our choice of A,
see Figure 5. This provides the intuition for why we achieve
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expected linear running time. Each dart throw takes con-
stant time, so iteration i takes c1|Ci| work. If we include
the dimensional-dependent factors, the template size and the
number of coordinates, then c1 = Add2

√
d +1ed .

|Co| = Θ(n) [EPM∗11]. The total work w = c1 ∑
∞
i=0 |Ci|,

and |Ci+1| < c2|Ci|, so the infinite geometric series sum is
w = |Co|c1/(1− c2) = E(nd1+d/2). The algorithm will ter-
minate at iteration log1/c2

|Co| and the total work is linear in
|Co|, just as a binary tree has log2 n depth and 2n size.

Since log1/c2
(|Co|) is a very slowly growing function of

|Co|, only a handful of darts are added after iteration 16 for
even our largest samplings. In order to resolve cells that are
covered by multiple disks that just barely overlap, we often
iterate to i = b = 23. These are such a small fraction of the
total number of cells that they do not effect our running time
or memory needs. (This is in contrast to Gamito & Mad-
dock [GM09], where cells with misses are refined immedi-
ately, and the paper claims that an explicit level limit, e.g.
16� 23 = b, is required to avoid a blow-up in the number
of active cells.)

We have been unable to derive provably optimal, or even
necessary and sufficient values, for A and B. Nor are we able
to prove the expectation that |Ci+1|< c2|Ci|. To do so would
require spatial statistics theorems bounding the average frac-
tional area of a active cell covered by prior disks, and the
average-case number of child cells that are not completely
covered by a disk.

4.2.2. Linear Memory

Given dimension d and bits of precision b, our memory is
O(bdBn) = O(d2bn). The output sample points require nbd
bits: n points with d coordinates with b bits. The grid cells
require O(Bndb) bits: each cell has d indices with b bits;
the number of cells is O(Bn), which hides some dimensional
dependence on the sampling density and ignores any domain
boundary effects.

4.3. GPU Implementation Details

Our algorithm can be extended to parallel platforms. To
demonstrate this, we implemented GPU versions in 2d and
3d. We used NVIDIA CUDA 3.2 on an NVIDIA GTX 460
GPU. Algorithm 2 provides an overview.

There are three main parallel steps: generating candidate
darts, checking that they are disk-free, and subdividing and
keeping uncovered cells. To avoid race conditions, disk-free
checks are performed in two parallel stages: once against
previously accepted samples, and once against current can-
didate darts. If candidate darts conflict, the ones with higher
arrival indices are rejected. Parallel selection causes a larger
fraction of the thrown cells to be misses than in the serial
case, the price we pay for parallelism. We use the index of
the thread generating the dart as its arrival index. This does
not add bias, since threads randomly pick cells.

The dart-throwing part of our GPU implementation
closely follows the work by Ebeida et al [EPM∗11].

Algorithm 2 Simple GPU MPS algorithm.
PARALLEL are GPU kernels, SERIAL are CPU steps.

initialize Go, i = 0, Co = Go, as Algorithm 1
while |Ci|> 0 do {SERIAL}

{throw candidate darts, in parallel}
for all A|Ci| threads do {PARALLEL}

select an active cell Ci
c from Ci uniformly at random

reject if parent base grid cell Go
c is locked

throw candidate dart c into Ci
c uniformly at random

if c is disk-free w.r.t. accepted darts {p} then
lock Go

c
save c and its arrival index as a candidate in Go

c
end if

end for
{accept first candidate darts, in parallel}
for all base grid cells Go without an accepted sample
do {PARALLEL}

if cell Go
c has a candidate c then

if c is disk-free w.r.t. candidate darts {c} with a
lower arrival index then

promote dart c to sample p, updating Go
c and Ci

as Algorithm 1
else

mark Go
c for unlocking before next iteration

end if
end if

end for
{generate subcells in parallel}
for all active cells Ci do {PARALLEL}

if i < b subdivide Ci
c into 2d subcells

append uncovered (sub)cells to the list Ci+1

end for
increment i {SERIAL}

end while

5. Experimental Setup and Results

Memory and time. Figure 4 compares the running time
and memory usage of our algorithm to Gamito and Mad-
dock’s [GM09] in 2, 3 and 4 dimensions, and to Ebeida et
al.’s [EPM∗11] in 2 dimensions. See also Eurographics2012
Additional Material Appendix A Figure 8 for a linear scale.

It appears that we use a factor of 8 less time and a factor
of 2–3 less memory than Gamito and Maddock in 2 dimen-
sions. In 3 dimensions the factors are 9–10 for time and 4–5
for memory. In 4d, the factors are 6–8 (for A = 0.6–1.6) for
time and 10 for memory. We are able to go one dimension
higher given the same time and space bounds. In 2 dimen-
sions, we use about the same runtime as Ebeida et al., but a
factor of 2–3 less memory.

Gamito and Maddock’s Figure 4 [GM09] shows both the

c© 2011 The Author(s)
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d A B n r (×10−4) so (×10−4) |Go| MC (GB) M (GB) t = runtime (s) n/t m/n

2 0.3 2 24M 1.7 1.2 69M 1.1 2.1 330 73000 4.7
3 0.3 3 6.1M 50 28 43M 1.0 1.9 700 8600 19
4 0.6 4 1.4M 280 140 25M 0.80 1.8 1900 760 140
5 10 5 340k 830 370 14M 0.56 1.6 10000 33 5800
6 700 6 44k 3100 1300 0.26M 0.012 0.017 4800 0.93 560000

Table 2: CPU performance statistics for our largest samplings by dimension d. A is the number of throws per initial active cell;
B is the dimensional-dependent constant that governs the amount of memory used; n is the output size; r is the Poisson-disk
radius; so is the base grid side lengths; Go is the base grid; MC is the amount of memory that stores active cell indices while
M is the total amount of memory; and m is the total number of dart throws, including misses. The last two columns give the
relative efficiency by dimension: samples per second, and throws per successful dart.
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Figure 4: Memory and time of our algorithm vs. bias-free
alternatives. Log–log scales with 0-intercept trendlines.

runtime and memory challenges in efficiently generating a
fixed-size sampling as the dimension increases; our results in
Figure 4 across dimension are consistent with these trends.
While the complexity is roughly linear in output size for all
of the methods we considered, including ours, the depen-
dence on dimension was severe and appears fundamental.

For any fixed dimension, as long as A is above a threshold,
its effect on the runtime is rather mild; see Eurographics2012
Additional Material Appendix A Figure 9.

However, as the dimension increases, the miss rate in-
creases and the number of uncovered subcells per cell in-
creases. To stay within the memory budget, A must be in-
creased. Table 2 gives performance details by dimension. For
example, the last column illustrates the increasing miss rate.
Figure 5 shows that the challenges grow with dimension in
the first few iterations, but for later iterations the algorithm
performs about the same regardless of dimension.

In 5 dimensions we generated 340,839 points in 2.8 hours
and 1.5 GB of memory. We threw 1.9 billion (1.9e9) darts.
Using B = d = 5, we had to increase A from 0.6 to 10 for the
subcells to fit in their array.

GPU results. Our GPU implementations, run on a mid-
range NVIDIA GTX 460, are able to achieve 1M samples
per second in 2d, and 75k samples per second in 3d. This
is about a 10× speedup over our CPU implementation. The
available memory allows us to produce about 600k points in
2d, and 200k points in 3d.

Bias-free. Our serial process is provably bias free. By
selecting an active cell uniformly then selecting a point in
the cell uniformly, the probably of introducing the next part
within any disk-free region is proportional to the area of that
region. This is equivalent to bias-free [EPM∗11].

To demonstrate that the output is bias-free, we present ra-
dial mean power and anisotropy variations for an averaged
collection of ten sampling patterns. These plots, shown in
Figure 6, follow expected blue noise behavior and match
past literature [WCE07,Wei08]. The anisotropy measure in-
dicates a consistent drop of 10 dB across the spectrum for ten
distributions. For our GPU implementation, we show slices
of the 3d FFTs based around the XY, YZ and XZ axes in
Figure 7. We see the expected noise, with no artifacts in any
dimension. See also Eurographics2012 Additional Material
Appendix A Figure 10. These confirm that output is bias-
free.

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



Ebeida, Mitchell, Patney, Davidson, & Owens / A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions

!"!#$%

!"!&$%

!"'($%

'"#'$%

)&"!!$%

)!!"!!$%

!% *% +% #)% #,%

!!
" !
"#
!#

$ !
""

%&'()*$+""$

,)*$"$-"./01'("$-"23*4'"&$"5)6'"7(89":';;6""
46<"%&'()*$+"""1=">80'+68$+"

)-%
'-%
*-%
&-%

(a) Number of active cells, as fraction |Ci|/|Go|

!"!!!#$%

!"!!#!$%

!"!#!!$%

!"#!!!$%

#"!!!!$%

#!"!!!!$%

#!!"!!!!$%
!% &% '% #(% #)%

! "
#$
#!
!

"#$%&'()!"!

*&+,-$.!/00$,#$1!2)!"#$%&'()!"##
&.!3%&0'()!(4!5(#&-!6(2)#.7!!

89!:2+$).2()!
(*%
+*%
&*%
,*%

(b) Fraction of samples from each iteration

!"!!!#$%

!"!!#!$%

!"!#!!$%

!"#!!!$%

#"!!!!$%

#!"!!!!$%

#!!"!!!!$%
!% &% '% #(% #)%

! "#
$#
! !"

!#
$%

&!'(#)"*%"#

+(#,)"*%"-%./0'%12'*!%/*%&!'(#)"*%"##
34%5/0'*6/"*% (*%

+*%
&*%
,*%

(c) Fraction of total time spent in each iteration

Figure 5: Algorithm features while sampling the unit d-box.
For d < 5, n =1e6 and A = 0.6. For d = 5, n =3.4e5 and
A = 10. Cell count (memory) peaks at the first cell subdivi-
sion. Over half of the samples are generated in the zeroth
iteration. Peak time is for iteration two. Log–linear scales.

Figure 6: Radial anisotropy and mean power estimates for
2d (top) and 3d (bottom), averaged over ten samplings.

(a) XY-Slice (b) YZ-Slice (c) XZ-Slice

Figure 7: Slices of our 3d FFT for 26K MPS points.

6. Discussion

We report a simple method for maximal Poisson-disk sam-
pling. For a fixed memory budget of O(d2bn) for b bit of
precision, the empirical expected time is E(nd1+d/2). The
method extends to arbitrary dimensions, and we provide im-
plementation results in dimensions up to six. No current
methods scale well with dimension. The kissing number
grows exponentially in d and affects the number of nearby
darts that must be checked. The volume ratio between a unit
box and a unit sphere grows doubly-exponentially in d and
affects the efficiency of all grid-based methods. For a unit
box, n is doubly-exponentially dependent on d and the sam-
pling radius r independent of any algorithm.

A challenge is to provide efficient software for sampling
in 10 dimensions. Dimensions above 1000 appear to be out
of reach for any known approach. Most methods are nearly
linear (time and memory) in output size for a fixed dimen-
sion, but finessing the “curse of dimensionality” appears to
be a fundamental challenge.

In practice our methods do better than the maximal and
bias-free alternatives, especially for higher dimensions. We
are able to generate larger samplings, and we generate them

c© 2011 The Author(s)
c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



Ebeida, Mitchell, Patney, Davidson, & Owens / A Simple Algorithm for Maximal Poisson-Disk Sampling in High Dimensions

more quickly. Our GPU versions in 2d and 3d run an order
of magnitude faster than our serial CPU implementation. We
plan to make our software available to the wider community
for experimentation and comparison.

Our method has several tuning parameters affecting the
runtime and memory usage; we have not completely char-
acterized their dependence on dimension. We encourage
the broader community to analyze the family of maximal
Poisson-disk methods more carefully in terms of their de-
pendence on dimension, and finite-precision effects; and de-
velop objective analytic tools for evaluating sampling qual-
ity. Several results from spatial statistics concerning non-
maximal Poisson-disk samplings would help in the analysis
of the dart-throwing family of algorithms.
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Appendix A: Eurographics2012 Additional Material
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Figure 8: Memory and time used by our algorithm vs. bias-
free alternatives. Linear scale with 0-intercept trendlines.

Linear scale complexity plots. Figure 8 compares the
runtime and memory on a linear scale. See Section 5 Fig-
ure 4 for the same data on a more illuminating log-log scale.
Gamito and Maddock’s was the only bias-free, higher-than-
two-dimensional Poisson-disk software we were able to ob-
tain for comparison. However, it is a good basis for compar-
ison because it was competitive with the alternatives, includ-
ing some biased alternatives, at the time of their publication
in 2009.

Effect of A. Figure 9 shows that the runtime in 2d is
largely invariant to A, as long as it is large enough that the
number of cells in the next iteration decreases.
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Figure 9: The effect of parameter A on the runtime of our
2-d algorithm.

Analysis using the PSA tool. Figure 10 shows the 2d out-
put quality of our CPU and GPU implementations using the
Point Set Analysis [Sch11] tool. PSA generates standard-
ized spectral diagrams for 2d point distributions, aiding di-
rect comparison. The ring patterns in the spectra (a) and (e)
are typical of Poisson-Disk sampling: a dark central disk sur-
rounded by alternating light and dark rings rippling out from
the center, decreasing in magnitude. Radial mean power, (c)
and (g), measures the average variation of the rings’ mag-
nitudes, and Anisotropy, (d) and (h), measures the variance
along their circumferences. In these figures and those of the
main paper, we notice no visible artifacts. PSA also indicates
that there are no significant differences between the serial
and parallel outputs, beyond the inherent randomness from
one uniform sampling to the next.

The astute reader may have noticed the bright white dots
at the center of the spectra in Figure 7. These center dots
represent the DC component of the FFT input. The PSA
software deliberately removes the DC component from Fig-
ures 10 (b) and (f).
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Figure 10: Comparison of our CPU and GPU output using the PSA tool. For this experiment we chose a minimum distance of
r = 0.01 in a 2d unit box.
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